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The dynamics and rheology of semidilute unentangled micellar solutions are investigated by Langevin
dynamics mesoscopic simulations coupled to a microreversible kinetic model for scissions and recombinations.
Two equilibrium state points, differing by the scission energy and therefore by the corresponding average
micelle length, have been examined. The kinetic rates are tuned by an independent parameter of the model,
whose range is chosen in such a way that the kinetics always strongly couple to the chain dynamics. Our results
confirm, as predicted by Faivre and Gardissat, that the stress relaxation, as well as the monomer diffusion, is
characterized by a time ��, defined by the lifetime of a segment �, whose Rouse relaxation time is equal to its
lifetime. Moreover, the power-law dependence of the zero-shear viscosity versus �� was evidenced. Under
stationary shear, the chains are deformed and their average bond length is increased, which enhances the
overall scission frequency. In turn, this induces an overall shortening of the chains in order to increase the
overall corresponding chain-end recombination frequency, as required by the stationary conditions. Nonequi-
librium simulations show that the chain deformation and orientation, as well as the rheology of the system, can
be expressed as universal functions of a single reduced shear rate ��= �̇�� �with �̇ the bare shear rate�.
Furthermore, local analysis of the kinetics under stationary shear gives insights on the variation of the average
length with shear rate.
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I. INTRODUCTION

Cylindric micellar solutions, which belong to the broader
family of the supramolecular polymers, have attracted much
attention for the past 20 years �1–3�. Several recent books
and review articles �3–5� present the state of the art of theo-
retical and experimental investigations on such systems, fo-
cusing mainly on their rheological and scattering properties.
The reversible dynamics of micelles aggregation �by end-to-
end recombination� and disaggregation �by scission into two
parts� give to these solutions peculiar viscoelastic properties
exploited by the oil industry �6�. Numerous laboratory ex-
periments have been performed to probe the linear and non-
linear viscoelasticity of cylindric micellar solutions leading,
particularly in the nonlinear regime, to intriguing phenomena
such as shear banding �7� and shear thickening �8�, phenom-
ena that also motivated intense theoretical investigations
�3,9,10�.

The first “microscopic” theoretical study of the dynamics
of micellar solutions was dealing with their linear viscoelas-
tic behavior in the entangled regime �11�. Micelles were
treated as ideal equilibrium polymers, characterized by an
exponential distribution of lengths P�L��exp�−L /L0� with
mean L0. The classical polymer melts dynamics �12� was
adapted to account for the scission-recombination kinetics,
which introduces an extra stress relaxation mechanism. Us-
ing the mean-field �MF� approach of the kinetics, it is as-
sumed that a chain end created by scission �through a uni-
molecular process with rate ks per unit length� will
recombine with the chain end of another chain �through a
bimolecular process with rate kr�. As a result of detailed bal-
ance requiring that

ks

kr
= �

2L0
2 , where � is the monomer number

density �or volume fraction�, the time �b= �ksL0�−1 character-

izing the kinetics is the average lifetime of a micelle of av-
erage length and also the lifetime of a chain end. Applying a
small step shear strain at t=0, the resulting shear stress can
be expressed as G�t�=G0u�t�, where G0 is the elastic shear
modulus and u�t� is a normalized relaxation function that
decays to zero on the structural relaxation time �relax of the
system. The zero-shear rate viscosity is then expressed as
�0=G0�relax. For a monodisperse entangled melt of usual
polymers of length L, �relax=�rep�L�, where �rep�L� is the rep-
tation time, while for an entangled micellar solution where
�b��rep�L0�, one expects �relax��rep�L0�.

The viscoelastic response of entangled systems is gener-
ally obtained by identifying the function u�t� with the tube,
relaxation function. In standard polymer dynamics theory,
the tube relaxation results only from the reptation motion of
the chain out of its original tube, while for micelles with
sufficiently rapid kinetics, the chain scissions introduce lo-
cally an additional partial relaxation of the tube. The way to
express this local relaxation depends on the nature of the
dynamics of the new chain ends on the �b time scale and on
the ratio of the breaking and reptation times 	=

�b

�rep
. In the

regime N T
−1
	
1, where NT is the number of tube seg-

ments, Cates �3� obtained �relax=��b�rep�L0�, the relaxation
being exponential only if the kinetics is sufficiently fast,
namely 	1/2
1. If the latter inequality is not verified
strongly enough, nonexponential corrections appear in the
relaxation function as the local stress relaxation is not uni-
form along the tube. If the kinetics is even faster such that
	
N T

−1, different �relax expressions are obtained depending
on whether the chain end dynamics on the �b time scale is
simply Rouse-like �13� or in the “breathing modes” regime
�3�.

The mean-field hypothesis for the scission-recombination
kinetics has been challenged by �14� in the context of en-
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tangled micelles in the regime N T
−1
	
1 where the end

chain dynamics is diffusive along the tube contour on the �b
time scale. The nonexponential contributions to the shear
stress relaxation observed in some experimental rheological
data in the short-time regime were attributed to successive
correlated scission-recombination events whereby the two
chain ends produced by scission recombine with each other
if �b
�h ��h is the time needed by a chain end to diffuse over
a distance h= �

L0

� �1/3 corresponding to the typical distance
between chain ends in a micellar solution of number density
��. A key parameter is thus X=

�h

�b
: if X�1, the micellar

dynamics is “mean-field”-like, while in the opposite case
�X�1�, the dynamics is coined “diffusion-controlled” �DC�
and leads to qualitatively different results. The distribution of
recombination times �t� is no longer a single exponential as
for MF cases but presents two successive regimes. For times
below �h, it presents an algebraic decay �t�
��t*�−1�t* / t�5/4, where t* is the time for two newly created
chain ends to recombine with one another �t*
�h in the DC
case�. For t��h, the distribution becomes exponential, �t�
�

�b

�h
2 exp�−t /�h�. The shear relaxation function thus also pre-

sents two different regimes where, at long times �t��h�, one
gets an exponential decay with a characteristic time �relax
equal to ��h�rep�L0�, in which the breaking time of the MF
expression is replaced by an effective time equal to �h, as-
sumed to be the typical minimum time needed for a chain
end to make a noncorrelated recombination with a new part-
ner. A very recent refined theoretical analysis of the
diffusion-controlled dynamics of entangled micelles �15� has
further shown that other regimes exist where the stress relax-
ation can be highly nonexponential at long times. It should
be noted that in all the above theoretical approaches that are
valid for entangled solutions, the main relaxation time al-
ways depends on the micelle average size L0, whatever the
time scale over which the kinetics proceeds.

For unentangled micellar solutions, it is expected that, if
the scission-recombination mechanism is fast enough, the
structural relaxation will be characterized by �relax
�R�L0�,
where �R�L0�=�0L0

2 is the Rouse relaxation time of a chain of
size L0 in an equivalent polymer melt, with �0 a local time.
To deal with this new situation, Faivre and Gardissat pro-
posed a modification of the standard Rouse theory for stress
relaxation �16� within the context of the viscoelasticity of
liquid selenium where temporary linear atomic structures,
akin to cylindric micelles, are present. Within the spirit of
mean-field kinetics, they took into account the effects of in-
dependent scissions taking place along the chains while they
implicitly assumed that the recombination events remain
neutral on the relaxation process. In the standard theory of
unentangled polymer dynamics, the stress relaxation takes
the form of a sum of exponential terms associated with the
different Rouse modes, a particular Rouse mode representing
the collective dynamics of a set of n adjacent “monomers.” If
a subsegment of n monomers is the object of random scis-
sions, the lifetime distribution is exponential with a charac-
teristic time �n= �nks�−1. Hence, these scissions are supposed
to cause the amplitude of the associated mode relaxation, a
constant in the standard Rouse expression, to decay exponen-
tially in time with a characteristic time equal to the

n-monomer segment average lifetime �n. By summation over
all modes, the final expression for the fast kinetics case is
G�t�� 1

�t
exp�− t

� �, where the relevant time scale �
=�b

2/3�R�L0�1/3 is now independent of L0. The viscoelastic be-
havior of unentangled micelles subject to fast scission-
recombination kinetics is thus found to be related to internal
chain segment dynamical effects, the static average length of
the micelles �L0� in the solution becoming irrelevant.

The above summary indicates that, already in the linear
regime, the cylindric micelles solutions present a rich variety
of rheological behaviors depending upon the relative impor-
tance of a few physically relevant time scales. Experimen-
tally, Cole-Cole plots on the linear viscoelasticity of en-
tangled micelles have shown, for a wide range of different
chemical types, a strongly Maxwellian character. The
reptation-reaction model �3� has proved to be successful not
only to justify the exponential character of the relaxation but
also to interpret the origin of leading corrections to this be-
havior observed experimentally in some particular cases. By
contrast, the case of unentangled melts has been much less
investigated experimentally �16�.

Further investigations focusing on the dynamics of micel-
lar solutions were performed by molecular dynamics or
Brownian dynamics simulations �17–22�. These simulation
studies either use existing polymers generic models suitably
modified to allow for reversible scissions and recombina-
tions, or they explore new models within a multiscale strat-
egy to approach more realistically giant micelles rheology
�23�. Actually, a wide literature exists today on micellar so-
lutions simulations using either lattice models or continuous
models, but the focus is often put on structural properties, in
particular the micelle length distribution, at various concen-
trations or temperatures, at equilibrium or under shear flow
conditions. In shear flow, it has been quite generally ob-
served �17,19,24,25� that the mean size of the micelles de-
creases with increasing shear flow. Studies where the focus is
directed toward the coupling between polymer dynamics and
the explicit scission-recombination kinetics, and its rheologi-
cal implications, were addressed by much fewer simulation
studies.

Using the FENE-C model �17�, which is a continuous
bounding pair potential with a barrier Esc to scission but
presenting no barrier to recombination, Padding and Boek
�22� simulated by molecular dynamics a dense fluid of
monomers at high �liquid� monomer volume fraction. For
various values of Esc �which also represents the energy gain
when two micelles fuse together�, they simulated micelles of
various average lengths 4
L0
140. By looking to the ex-
plicit distribution of chain end recombination times �t�,
they observed two main successive time regimes, in very
close analogy to the situation conjectured by O’Shaughnessy
and Yu in the context of entangled melts with correlated
transitions �14�. From an analysis of the simulation data, they
got a �t / t*�−5/4 decay at short times, followed by an exponen-
tial behavior at long times. As they noted, the first algebraic
part can be explained by the theoretical argument used by
O’Shaughnessy et al. �14�, as the mean squared displacement
of chain ends in the present unentangled case follows a t1/2

power law, just like it does in the reptation regime for an
entangled melt where one-dimensional curvilinear diffusion
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takes place along the “random walk” tube. The presence of
correlated scission recombination events between the same
partners in MD simulations is indeed highly plausible, given
the form of the pair interaction, which easily allows two
chain ends generated a short time earlier by scission to re-
combine with each other after some Brownian motion, espe-
cially in the absence of any energy barrier to their recombi-
nation. The authors interpreted the time scale of the final
exponential behavior as the average time th, which is the
time for a chain end produced by scission to reach a new
chain end. They observed that the stress relaxation function
computed from the MD trajectory was compatible with a
Faivre-Gardissat expression with relaxation time expressed
as �=�h

2/3�R�L0�1/3, where �h was set to the value extracted
from the long-time behavior of �t�. The same authors and
Briels �25� studied very recently the rheology of micelles on
the basis of a new model based on articulated rods to better
cope with the micelle persistence length, allowing for scis-
sions and recombinations through the use of a continuous
potential with a barrier separating unbounded and bounded
states.

Unentangled micellar solutions were also studied by
Brownian or Langevin dynamics on the basis of a cylindric
micelle model built as a linear assembly of Brownian par-
ticles where scissions and recombinations are modeled by a
stochastic process interchanging the nature �bounded or un-
bounded� of the two-body potential between neighboring
particles �19,20,26�. Each monomer possesses two arms that
can be free �such as in isolated monomer or in chain end
monomer� or engaged in a bounding pair with one arm of
another monomer, a model allowing linear micellar struc-
tures only. A Lennard-Jones-FENE �LJF� restraining poten-
tial is used for binding two arms while a purely repulsive LJ
potential is considered for unbound pairs. The bounded po-
tential is shifted vertically so that its minimum lies at an
energy W below the “zero potential level” of the unbounded
form �large distance value�, representing a decrease or an
increase of energy when a bond forms or breaks. The
scission-recombination kinetics is controlled by an adjust-
able control parameter, the rate � at which arms are selected
at random and a change of their status attempted �26,20�.

This model offers two important control parameters: for a
given �� ,T� state point, W fixes the mean micelle length L0
while � controls the size of the barrier heights and thus the
scission-recombination rates. The scission rate can be ex-
pressed as ks=2�Qs, where Qs is the probability that a bond
opening is successful, once one of the arms engaged in the
bond has been selected. As at equilibrium Qs is a product of
the imposed frequency W and the probability Qs , as a func-
tion of the state point T ,�W, while thermodynamic proper-
ties are independent of �, our kinetics model allows us to
investigate the effect of the sole modification of the internal
kinetics time scale. Our earlier studies on a single state point
�system of 1000 beads at �=0.15, kBT=1, and W=10kBT�
for micelles of average size L0=56 led to a distribution of
first recombination times having the mathematical features
observed by Padding and Boek �algebraic decay at short
times followed by exponential decay with characteristic
time, which we denoted as �b�. We observed that all dynami-
cal results are consistent with theoretical predictions based

on a MF approach of the kinetics �19,20�, provided the rates
are renormalized as ks=2��Qs and �b= �2��QsL0�−1, in
which the renormalizing factor 0
����
1 is such that
�1−�� measures the fraction of correlated scission-
recombination at short times, at a given state point. In simu-
lations of micellar solutions with a microscopic model allow-
ing scission-recombinations, it is crucial to distinguish
between the bare rates �e.g., ks

0=2�Qs� and the effective
rates �e.g., ks=�ks

0� where only the effective ones matter in
the “long-time” window of interest for unentangled solu-
tions. The relevance of these effective rates was demon-
strated in simulated “T-jump experiments” �18,20� and in the
interpretation of the shear stress relaxation �or viscosity� ac-
cording to the Faivre-Gardissat expression where the relax-
ation time �=�b

2/3�R�L0�1/3 implies the lifetime �b based on
effective rates �19,20�. While these observations are coherent
with earlier results �22�, it appears impossible however in the
explored parameter range of our model to relate the
�-dependent effective lifetime �b to the �-independent chain
end diffusion time �h.

In the present paper, we further investigate dynamical
properties of our model by Langevin dynamics. In particular,
equilibrium dynamics and rheological properties of our sys-
tem are explored through two state points differing by the
“end cap” energy parameter W, leading to average micelle
lengths of L0=56 and 151. The paper is organized as follows.
In Sec. II, we review the main features of the model and its
implementation. In Sec. III, we establish the microscopic ex-
pressions of the rate constants, and we test explicitly that our
Langevin dynamics plus the scission-recombination stochas-
tic procedure satisfies microscopic reversibility. In Sec. IV,
we discuss the link between the effective rate constants and
the transport properties of the system. Section V is devoted
to the properties of our system under stationary shear flow.
Section VI gives some conclusions of the present study.

II. MODEL AND SIMULATION TECHNIQUE

The micelles are modeled as flexible equilibrium polymer
�EP� chains composed of spherical beads of mass m interact-
ing via pairwise interactions shown in Fig. 1. Nonbounded
pairs are interacting via a repulsive Lennard-Jones U2�r�
given by Eq. �1�. Chains are linear sequences of n beads
directly connected by a set of �n−1� bounding potentials
U1�r� of the Lennard-Jones-FENE type �27�, given in Eq.
�2�. It is important to stress that the bounding potential is
shifted vertically so that its minimum lies at an energy value
−W with respect to the �zero� energy level of the repulsive LJ
potential U2�r� at large distance. We have

U2�r� = 4����
r
	12

− ��
r
	6

+
1

4

��21/6� − r� , �1�

U1�r� = U2�r� − 0.5kR2 ln�1 − � r

R

2	 − Umin − W , �2�

where ��x� is the Heaviside function ���x�=0 or 1 for x

0 or x�0�, Umin is the minimum of the sum of the first two
terms in U1, R is the maximum extension of the bond, and k
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is a spring constant. As potential swaps U1�r��U2�r� are
considered to model scissions or recombinations, W thus rep-
resents the pair bounding energy or, in the present context,
twice the end cap energy in a cylindric micelle.

We study a system of M beads in a volume V, in a solvent
of temperature T, modeled as a continuum with friction co-
efficient �. The space-time evolution of the beads is gov-
erned by a Langevin dynamics �LD� scheme. The equation of
motion of the bead “i” is

m
d2r̄i

dt2 = F̄i − ��v̄i − v̄0�r̄i�� + R̄i �3�

where r̄i, v̄i, and F̄i are, respectively, the position, velocity,
and systematic force of bead i, and v̄0�r̄� is the macroscopic
flow field term, which is absent in equilibrium simulations.
In the presence of shear flow, we adopt the Lees-Edwards
boundary conditions �28�. The above equations neglect the
hydrodynamic interactions, as in some previous works on

complex fluids �29,30�. The random force R̄i obeys the usual
Langevin dynamics hypothesis and fluctuation-dissipation
theorem �31�, i.e., �Ri��t�Rj��t���=2m�kBT�ij�����t− t��,
where the Greek-letter subscripts represent Cartesian compo-

nents. The flow field v̄0�r̄� is v̄0�r̄�= �̇y1̄x for the system un-
der shear flow along x and velocity gradient �̇ along y.

In our model, each bead possesses two arms that can be
either in a bounded or an unbounded state �branching and
cyclic chains are excluded�. A key control parameter is �, the
scission-recombination trial frequency per arm. After each
LD time step �t, an attempt to modify the status of each arm
is made with a probability ��t. Such an attempt also in-
volves the change of status of a second arm, namely the
partner arm in the breaking of an existing bond or the
complementary free arm needed in the forming of a new
bond. Any attempt thus merely consists in going from a to-
pological “state” to another topological “state” �with identi-

cal bead positions�, which only differ by the presence or
absence of a particular bond. The full trial-acceptance proce-
dure involving the original arm follows a microreversible
METROPOLIS Monte Carlo �MC� algorithm, which has been
explained in detail in Ref. �26�, for which we establish below
a link with kinetic rates.

All experiments are performed under the conditions of
temperature T=1, monomer density �=0.15, and friction co-
efficient �=3�, where all quantities are reduced by appropri-
ate combinations of the bead mass m, the length �, and en-
ergy � appearing in the Lennard-Jones potential U2�r�.
Equations �3� are solved by the algorithm suggested in Ref.
�32�, using a time step �t=0.005. We studied two semidilute
thermodynamic state points differing only by the choice of
the bond scission energy parameter W. For the case W=10,
we used M =1000 beads and we get an average length L0
=56 at equilibrium. For W=12, we get longer chains with
L0=151 at equilibrium and we used M =5000 beads. In both
cases, the average chain size indicates semidilute unen-
tangled conditions for our system, namely L*
L0
Le. In-
deed, L0 is larger than the threshold length L* between the
dilute and the semidilute regimes given by L*=�1/�1−3��

�13, where � is the Flory exponent. Our systems are unen-
tangled as L0 is much smaller than the entanglement length
Le�630 for our system, using the scaling Le�f�
=Le�1�p−1/�3�−1� �see Ref. �33�, where p is the packing frac-
tion, and the estimate Le�1�=65 for a melt of FENE chains at
temperature T=1 at a packing fraction that is larger by a
factor � 0,85

0,15�, see Ref. �34��.
The rate � was varied in the range 0.02���5 as it

turned out to be the adequate window for this control param-
eter to be in a regime where the resulting scission-
recombination kinetics is sufficiently fast to affect the struc-
tural relaxation time of our micellar solutions. Table I gives
the list of all equilibrium simulations performed, including
the total duration Ts of the runs.

III. SCISSION AND RECOMBINATION EVENTS AT
EQUILIBRIUM AND RELATED KINETIC CONSTANTS

A. Microscopic reversibility and “bare” kinetic
constants

In this section, we will express the scission and recombi-
nation rate constants in microscopic terms, hence clarifying
the nature of our kinetics algorithm, which is based on two
successive steps: selecting an arm at random �with frequency
�� and then looking for the possibility to switch the status,
which can be either free or bounded, of that arm. By analyz-
ing how individual scission and recombination events are
distributed in terms of the relative distance between involved
monomers, a detailed check of the microscopic reversibility
of the stochastic process is allowed.

We start by relating the total number of successful Monte-
Carlo scission or recombination steps to the bare scission and
recombination rate constants ks

0 and kr
0, the terminology of

“bare rates” being needed to distinguish them from “effective
rates” that we introduce later, dealing with long-time relax-
ation. For an equilibrium state sampled with our algorithm,

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
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Γ

FIG. 1. �Color online� Bounded potential U1�r� �continuous
curve� and unbounded potential U2�r� �dashed line� between a pair
of monomers. W is a parameter tuning the energy required to open
the bond. The figure also shows the � region where potential swaps
�equivalent to bond scissions or bond recombinations� are allowed.
The energy is scaled by � and the length by �. This figure corre-
sponds to W=10, R=1.5, and k=30. The two last parameters and
the � region are fixed through the whole study.
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the identical number of scissions and recombinations per unit
time and per unit volume can be expressed, respectively, as

ns��� = ks
0��1 −

1

L0
	 = �2�Qs

eq���1 −
1

L0
	 ,

nr��� =
1

2
kr

0� �
L0
	2

=
1

2
�2�Qr

eq�� �
L0
	2

, �4�

where we have expressed the bare rate constants as ks
0

=2�Qs
eq and kr

0=2�Qr
eq, introducing � independent prob-

abilities Qs
eq and Qr

eq defined below. We still note that the
factor 2 in 2� expresses the fact that there is a double pos-
sibility to trigger a given bonding change through the sam-
pling of one of the two bond connecting arms. For scissions,
Qs

eq is the probability that a randomly selected bond is ulti-
mately changed into two chain ends for the MC step under
consideration. For recombinations, Qr

eq is the probability that
a randomly selected pair of micelles fuse together by con-
necting any pair of their chain ends into a new bond. Alter-
natively, in terms of individual arms, 1

2
�
L0

Qr
eq is the probabil-

ity for a randomly selected free arm to form a new bond with
any other free arm available in the system.

Regarding Qs
eq��drqs

eq�r� and Qr
eq��drqr

eq�r� as inte-
grals over the distances between involved monomers within
the � region where transitions are allowed, one can express
the number of transitions taking place per unit volume and
per unit time in a unit range of distances centered on r by

Ns��,r� = �2�qs
eq�r����1 −

1

L0
	 ,

Nr��,r� =
1

2
�2�qr

eq�r��� �
L0
	2

�5�

for scissions and recombinations, respectively. The micro-
scopic expressions of qs

eq�r� and qr
eq�r� follow now from the

MC algorithm detailed in Ref. �26�. Let us define by P�r� the
normalized distribution �over the range �0,R�� of the relative
distance between bounded monomers and by gee�r� the pair

distribution function between chain ends �excluding ring clo-
sure pairs�.

When the sampled arm i is engaged in a bond, the prob-
ability for opening this bond within a unit distance interval
centered on r is given by

qs
eq�r� = P�r�Ps

acc�r� = P�r�� 1

Ni + 1
�min„1,exp�− ��U�r��… ,

�6�

where Ps
acc�r�, the probability to accept the bond opening, is

the product of the usual METROPOLIS acceptance term with
�U�r�=U2�r�−U1�r� and an r-dependent average �over all
bonded arms� of the factor 1 / �Ni+1� used in the algorithm to
satisfy microscopic reversibility, in connection with the prob-
ability to recombine �in the reverse step� the two free arms
resulting from the scission under consideration. Specifically,
Ni+1 is the total number of free ends that would be poten-
tially available �in the appropriate � region� to the originally
selected arm i in this reverse case �see Ref. �26��. For the
present semidilute solutions, the number of alternative part-
ners Ni for such a reverse recombination is found to be zero
in most cases so that the average in question is very close to
1.

Our recombination algorithm, which follows the sampling
of a free arm in the first place, starts by searching for avail-
able free arms at distances within the � range. If more than
one free arm is found, one of them is selected at random and
the recombination is then accepted with a probability
Pr

acc�r�=min(1,exp�+��U�r��), where �U�r� was defined
previously. Therefore, the probability for the selected arm to
find a free arm belonging to another micelle within a unit
distance interval centered on r is given by

1

2

�

L0
qr

eq = 4�r2gee�r�
2�

L0
Pr

acc�r�

= 4�r2gee�r�
2�

L0
min„1,exp�+ ��U�r��… . �7�

Microscopic reversibility requires that the number of
bond breaks and bond recombinations occurring within any

TABLE I. Static and kinetic data for the two semidilute cases, namely W=10 �L0=56� and W=12 �L0=151�, for the various � values
investigated. Ts is the total simulation time exploited for statistics. Qs

eq and Qr
eq are MC scission and recombination probabilities, defined in

the text, which enter in the microscopic expressions of the rate constants. � gives the fraction of transitions that are effective in the
determination of long-time scission and recombination rate constants ks and kr. �b= �ksL0�−1 is the average effective lifetime of a chain end
or equivalently the average effective lifetime of a chain of length L0. Finally, the quantity fe gives the fraction of recombinations of a free
arm with a new free arm partner.

W � Ts Qs
eq �104� Qr

eq � �b ks kr fe

10 0.1 2.5�105 1.09 4.50 0.81�2� 1036�22� 1.71�10−5 0.72 0.79

10 0.5 2.5�105 1.11 4.42 0.50�1� 334�5� 5.41�10−5 2.31 0.49

10 1 2.5�105 1.12 4.44 0.33�1� 229�3� 7.67�10−5 3.23 0.36

10 5 2.5�105 1.10 4.48 0.12�1� 142.8�8� 1.27�10−4 5.43 0.12

12 0.02 6.25�105 0.169 5.03 0.92�1� 10296 6.44�10−7 0.20 0.91

12 0.1 4.5�105 0.164 5.16 0.72�1� 2549 2.61�10−6 0.79 0.73

12 1 3.0�105 0.163 5.17 0.27�1� 702 9.46�10−6 2.85 0.29
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arbitrary distance interval is equal, thus requiring Ns�� ,r�
=Nr�� ,r�. We checked this relationship for the state point
with W=10 for various values of � using two equivalent
routes.

First, using estimates of P�r� and gee�r� measured from
bead position data extracted from the same simulations, we
compute the quantities Ns�� ,r� and Nr�� ,r� using expres-
sions �5�–�7�. For qs, we did the calculations with the
r-dependent average �1 / �Ni+1�� replaced by its average on
the full � interval, neglecting any r coupling for Ni. Figure 2
shows that the number of scissions and recombinations at a
given r is indeed equivalent as it should be, providing a
stringent test on the implementation of our kinetic stochastic
model.

Alternatively, we did a direct counting of Ns�� ,r� and
Nr�� ,r� during the simulations, each accepted scission �re-
combination� being added in a histogram, normalized in the
end by the system volume, by the total length of the simula-
tion and by the bin width. The results �not shown� are in
perfect agreement with the curves obtained from structural
data shown in Fig. 2.

Furthermore, Fig. 2 shows that Ns�� ,r� �or Nr�� ,r�� is
getting very small at r values corresponding to the limits of
the � region. This means that, would we have defined the �
region as the full range of the bounded state, namely �0,1.5�,
the number of transitions would have been only marginally
larger by 1%. Indeed, for distances below the lower limit r
=0.96, the energy gap to go from the �populated� bounded
state to the unbounded state is very high �very low accep-
tance probability�, while at distances above r=1.20, the same
is true for a transition from the �populated� unbounded state
toward the bounded state.

The overall probabilities Qs
eq and Qr

eq computed by inte-
gration of the qs

eq and qr
eq functions given by Eqs. �6� and �7�

are given in Table I. From Table I, we can appreciate how
various quantities change, as a result of a change of scission
energy from W to W+�W. The average length is scaled by a
factor exp�+��W

2 �, in agreement with ideal chain standard
theory �1� assuming that �W is close to the corresponding
scission free-energy difference. Probabilities Qs

eq and Qr
eq are,

respectively, scaled to �Qs
eq exp�−��W� for scissions and

approximately unchanged for recombination, as can be seen
from the integrand functions qs

eq�r� �or qr
eq�r�� for which the

mentioned scaling factor strictly affects the r domain for
which U2�r�
U1�r�, considering in this analysis that
changes in the structural functions P�r� and gee�r� with W are
minor.

B. Effective kinetic constants

In the explored � range, we systematically found in our
preliminary studies �20,26� that a significant fraction of scis-
sions are followed by almost immediate recombinations be-
tween the same original chain fragments. Such successive
accepted “MC moves,” taking place within a microscopic
time scale without effective change in chain topology, should
not contribute to the long-time structural relaxation behavior
of the micellar system. This point arises when it is attempted
to relate the scission-recombination events observed in our
simulations to effective rates, the key parameters ks and kr
appearing in the Cates scission-recombination kinetic model
which describes the long-time coupling between kinetics and
structural relaxation. ks and kr are “effective kinetic rates”
which need to be extracted from the long-time behavior of
the normalized distribution ��t� of first recombination times.
This distribution is accessible in simulations as a histogram
of free arm lifetimes t= t2− t1, the lifetime being calculated as
the elapsed time between the time t1 at which a free arm is
generated by scission and the time t2 it first recombines with
another free arm. For pragmatic reasons, ��t� was measured
up to a maximum time of Tmax=105.

The long-time behavior of ��t� turns out to be exponen-
tial and may be written as �asymp�t�= �

�b
exp�−t /�b�. The pref-

actor � is the fraction of effective transitions ��1−�� being
the fraction of correlated transitions� while the Poisson dis-
tribution involves a time-scale parameter �b, which repre-
sents the effective average lifetime of a free arm or the ef-
fective average lifetime of a chain of average length L0. The
two parameters � and �b can be estimated by direct fitting of
��t�. But the quoted values in Table I for all investigated
cases have been obtained by a cumulative hazard analysis, a
more robust method using the same original free arm lifetime
data �20�. Figure 3 shows all cases together, plotting
��t� /�asymp��b� as a function of t /�b, in order to show the
long-time universal representation of ��t�.

Turning now to the short-time behavior, it was found �20�
that ��t� is dominated by the contributions from recombina-
tions with the same original partner, and when these contri-
butions are isolated from the recombinations with a new
partner, the resulting distribution of self-recombination times
follows the power law in t−5/4 predicted by O’Shaughnessy
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FIG. 2. �Color online� Number of scissions Ns�� ,r� and recom-
binations Nr�� ,r� per unit volume, unit time, and unit length for the
distance r between involved monomers, at equilibrium and under
shear flow. The microscopic reversibility is verified at equilibrium,
as Ns�� ,r� and Nr�� ,r�, shown in green �lower gray� curve and
lower black curve, respectively, for the state point W=10 with rate
�=0.1, perfectly superimpose. In shear flow, at state point �̇
=0.028, W=10, and �=0.1, one observes that the bare rates are
increased with respect to results at equilibrium and that Ns�� ,r�,
shown by the light blue �upper gray� curve, and Nr�� ,r�, shown by
the upper black curve, are no longer identical �see Sec. V B�. For
the nonequilibrium case, we also show Ns�� ,r� �filled squares� and
Nr�� ,r� �empty circles� obtained by direct counting of scission and
recombination events, which coincide with the statistical expres-
sions given by Eqs. �5�–�7�.
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and Wu �14�. Data in Table I indicate that for each experi-
ment, the fraction fe of recombinations with a new partner
among all recombinations turns out to be systematically
close to �, providing further evidence of the different nature
of transitions responsible for the short- and long-time behav-
ior of ��t�, respectively. As the rate � decreases, we observe
that the fraction of correlated transitions decreases while
these transitions occur on a shorter and shorter time scale
with respect to the chain end effective lifetime. The �
=0.02 case shows a distribution following the exponential
law for t

�b
�0.02. We note �figure not shown� that the short-

time behavior of ��t� is identical for the two chain sizes at
the same � while the fraction of independent recombinations
� is slightly lower for the longer chain case �see Table I�.
This results from the very similar chain end Brownian mo-
tion subjected at the same frequency to attempted recombi-
nations whose acceptance probability is essentially 1 at short
times and becomes progressively smaller for shorter chains
�W=10� as both chain ends drift away and r approaches the
upper limit of the � window.

IV. SCISSION AND RECOMBINATION EVENTS AT
EQUILIBRIUM AND TRANSPORT PROPERTIES

The relaxation dynamics of micelles is expected to be
strongly influenced by the scission and recombination kinet-
ics provided the latter is sufficiently fast. We discuss in this
section how this point can be made precise for unentangled
micellar systems. Previous analyses of the stress relaxation
�16� and the monomer diffusion �18� have shown indepen-
dently that the scission-recombination kinetics leads to the
concept of a dynamical segment of size �= ��0ks�−1/3, where
�0 is the Rouse microscopic time. The segment size � is
determined by imposing the equality between the segment
lifetime and its internal Rouse time, namely ��=1 / �ks��
=�0�

2. The resulting common time

�� = �0
1/3ks

−2/3 �8�

is the new structural relaxation time of the micellar system if
�
L0. The local dynamics characteristic time value �0
=1.7 was obtained from a preliminary simulation of a mono-
disperse solution of “dead” polymers �i.e., without scission
or recombination� using our micellar model �with �=0� at
the same �� ,T� state point �26�. In the present work, we
study two semidilute systems differing only by the average
micelle size, and we vary � over a large spectrum, ranging
from 0.02 to 5. In Table II, we list the values of � and ��
based on �0 and the specific rate constant ks obtained previ-
ously, confirming that � assures �
L0 in all cases. We first
focus on the mean-squared displacement �MSD� of mono-
mers, g�t�. For a system of unentangled monodisperse dead
polymers of length L, the MSD evolves from a subdiffusive
behavior at short times toward an Einstein diffusion behavior
�35�, the crossover time �* being of the order of the Rouse
time �R=�0L2. The behavior of g�t� for micellar solutions is
much more complex to predict theoretically, as the mono-
mers belong to a poly-disperse set of chains that continu-
ously break and recombine. All g�t� curves are gathered in
Fig. 4 for �=0.1,0.5,1 ,5, in the case W=10 and for �
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FIG. 3. �Color online� Distribution of first recombinations ��t�
for two state points W=10 and 12, for various �’s. ��t� is scaled by
its mean-field asymptote �asymp��b� while t is scaled by �b. Data are
shown for W=12 with �=0.02 �filled triangles�, �=0.1 �filled
squares�, �=1 �filled circles�; and for W=10 with �=0.1 �open
squares�, �=1 �open circles�, �=5 �open triangles�. The dashed
line is an exponential curve representing the universal long-time
behavior.

TABLE II. Dynamic segment �, its lifetime ��, the MSD cross-
over time �*, and the diffusion coefficient D for the cases of W
=10 and 12, for various trial frequencies �.

W � � �� �* D

10 0.1 32.43 1788 4401 2.42�10−3

10 0.5 22.02 824 2283 3.14�10−3

10 1 19.75 663 1465 3.74�10−3

10 5 16.72 475 1199 4.05�10−3

12 0.02 97.28 16087 42076 7.01�10−4

12 0.1 61.17 6361 14616 1.13�10−3

12 1 39.50 2653 6427 1.63�10−3
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FIG. 4. �Color online� Mean-squared displacement of monomers
g�t�= ��r�t�2� for �=5,1 ,0.5, and 0.1 of the case W=10 and for
�=1,0.1, and 0.02 of the case W=12. Data are shown in order from
left to right. For �=0.02, the short-time �t0.6� and long-time �t1�
asymptotes are drawn �green dashed lines�. Their intercept defines
the crossover time �* �green dashed-dotted line�.
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=0.02,0.1,1 in the case W=12. At short times, the MSD is �
independent and shows a subdiffusive behavior �g�t�� t0.6�
while the long-time behavior is diffusive �g�t�� t1�. The
crossover times �*, determined on a log-log plot by the in-
tercept between the two asymptotes, are listed in Table II.
For a given end-cap energy W, the crossover time �* dimin-
ishes as � increases, while for a given � value, �* increases
as W increases. We can expect a link between the monomer
dynamics and the kinetics, namely �*���, or equivalently
�*�ks

−2/3, using Eq. �8�.
In Fig. 5, �* is plotted versus the corresponding ks value.

A two-parameter fitting gives ln �*=1.06−0.67 ln ks, sug-
gesting a power law �*�ks

−2/3, or equivalently, taking care of
prefactors, �*�2.4��, which confirms the relevance of �� as
the correct crossover time in the relaxation dynamics of the
living polymer chains.

The mean-square displacement in the long-time limit
gives the monomer self-diffusion coefficient D �see Table II�.
For a given W value, D increases with �, while at fixed �, D
decreases with W. This again can be rationalized in terms of
a unique dependency of D in terms of ks. As shown in Fig. 6,
the diffusion coefficient D scales like ks

1/3 in the explored �
range, in good agreement with results of the lattice bond
fluctuation model �BFM� �18�. This long-time behavior of
living polymers can be explained by a diffusion of single
monomers within clusters of � monomers, giving

D �
Rg

2���
�Rouse���

�
�

�2 � �−1 � ks
1/3, �9�

where Rg��� denotes the radius of gyration of the cluster. We
also note that our results are in agreement with dynamic MC
simulations of cylindric micelles based on a slightly different
potential model �21�.

The way to incorporate the influence of the kinetics on the
shear viscosity within unentangled semidilute solutions has
been proposed by Faivre and Gardissat �16� within the
framework of the Rouse relaxation theory. Taking into ac-

count the effects of bond scissions through specific lifetimes
for the Rouse modes, they found an explicit expression for
the shear modulus relaxation function G�t�,

G�t� = �
L=1

�

WL
G0

L �
q=1

L

exp�−
t

��
� L

q�
+ 2�q�

L
	2
� ,

�10�

where WL is the equilibrium micelle length distribution, �
and �� are defined previously in this section, and G0 is the
elastic modulus. For L0�� and t���, Eq. �10� becomes

G�t� = ��
6
	1/2

G0� �0

t
	1/2

exp�−
3

21/3
t

��
	 . �11�

The corresponding zero-shear viscosity, obtained by integrat-
ing Eq. �11�, gives

�0 = ��
3
	1/2

G0�0
1/22−1/3��

1/2 = ��
3
	1/2

G02−1/3�0
2/3ks

−1/3.

�12�

It is interesting to observe that, for unentangled micelle
solutions, the general dependency of the static viscosity on
the relevant physical parameters �� ,T ,� ,W� can be re-
expressed as an explicit function of �, T, ks, and L0. In the
regime where ��L0, we expect �0=�0�� ,T ,ks ,L0�,
whereas for systems with ��L0 �very slow kinetics� we
expect �0=�0�� ,T ,L0� �independent of ��, as the relaxation
would be purely Rouse-like. In the conditions of our simu-
lations where �
L0, Eq. �12� predicts that the L0 depen-
dency drops out, and �0 is a simple power law of ks or ��,
with G0 depending on � and T �G0=�kBT�.

The expression �0�ks
−1/3 is tested here using our zero-

shear viscosity data, which come from our two-state points
and various �’s. These viscosity values were not estimated
from dynamical fluctuations as earlier �20,22�, but by a more
precise numerical procedure based on an extrapolation of
nonequilibrium simulation results obtained in experiments
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FIG. 5. �Color online� The MSD crossover time �*, defined in
Fig. 4, is plotted vs ks on a log-log scale. Data come from two state
points and various � values: From left to right, we have, in order,
W=12 with �=0.02,0.1,1; and W=10 with �=0.1,0.5,1 ,5. The
dashed line with slope �−2 /3� corresponds to a power law �*

�ks
−2/3.
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FIG. 6. �Color online� Monomeric Einstein diffusion coefficient
as a function of ks for the two state points �W=10 and 12�. Data are
shown in order from left to right for W=12 with �=0.02,0.1,1; and
W=10 with �=0.1,0.5,1 ,5. The value of D is obtained from the
long-time behavior of the monomeric mean-square displacement
shown in Fig. 4. The dashed line represents a ks

1/3 power law.
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where our system is put under stationary shear flow. The
procedure was briefly described in Ref. �19�, and will be
explained in more detail in the next section. All thus obtained
values of �0 are shown in Fig. 7 as a function of ks. Our data
follow very well the ks

−1/3 law, independently of W. The best
fit of these data by the Faivre-Gardissat Eq. �12�, using G0 as
the only adjustable parameter, gives G0=0.19, which is quite
close to our previous estimate of G0=0.26 based on quite
noisy equilibrium G�t� �see Ref. �20��. Notice also that our
estimate is very close to the one given by the theoretical
expression G0=�kBT=0.15, the excess part being attributed
to short-time behavior of G�t� not taken into account in Eq.
�12�. This confirms once more the theory of Faivre and Gard-
issat, valid for fast kinetics.

V. NONEQUILIBRIUM PROPERTIES

In this part we are interested in the rheology and the ki-
netics of our system under stationary shear flow. Nonequilib-
rium simulations, using the technique exposed in Sec. II, are
performed on systems with a given set of parameters
�L0 ,� , �̇�. The results come from the same two-state points
as in equilibrium, with, respectively, L0=56 and 151. The
trial frequency � takes, for each state point, the same values
as indicated in Table I. The shear rate values considered are
in the range 5.6�10−5
�̇
0.21, with, for each couple
�L0 ,��, a specific range such that the reduced rate ��= �̇��
lies in the range 0.1
���100. At the setting up of the flow,
the system is equilibrated for a transient period of Ttrans=2
�104, then statistics are collected for runs of typically Tstat
=2.5�105.

The first part of this section deals with the collective rheo-
logical behavior. The second part analyzes the kinetics under
flow.

A. Collective material functions

Under shear flow, chains are oriented and deformed. Typi-
cally, these phenomena are studied experimentally by bire-

fringence and neutron or light scatterings. They can be mea-
sured through the anisotropy arising in tensorial quantities

such as the order-parameter tensor O� and the gyration tensor

G� . The former is given by

O� =
1

Nb
�
i=1

Nb � 3

2

uiui

�u�2
−

I�

2
� , �13�

where ui is the unit vector joining two adjacent monomers, I�

is the unit tensor, Nb is the total number of bonds, and �¯�
denotes the statistical average. For a given micelle length L,
we can define the gyration tensor as follows:

G� �L� =
1

2L2 �
i,j=1

L

��Ri − R j��Ri − R j�� , �14�

where Ri are the coordinates of the ith monomer in the chain.
In a polydisperse micellar solution, one can measure the
z-averaged elements �33�,

G� =� dLL2P�L�G� �L��� dLL2P�L� , �15�

where P�L� is the distribution of micelle lengths. The me-
chanic response of the system is conventionally measured by
the stress tensor �� . Its microscopic expression, for the ��
component, is given by

��� = −
1

V���
i=1

M

mvi�vi� + �
i=1

M−1

�
j=i+1

M

rij�Fij�	� , �16�

where vi� is the � component of the velocity of particle i, rij�
is the � component of the vector from the position of particle
j to particle i, Fij� is the � component of the force exerted by
particle j on particle i, and M is the total number of mono-
mers in the system.

At equilibrium, the system is isotropic and the tensorial

quantity, say A� , reduces to a scalar quantity, multiplied by I�.
With the shear flow along the x axis and gradient along the y
axis, the angle  A, defined through the relation

cot�2 A� =
Axx − Ayy

2Axy
, �17�

measures the rotation angle around the z axis in order to

bring the tensor A� in its principal axes �I , II , III�. As the
shear rate �̇ increases from zero, Axy starts linearly with �̇,
while the first contribution to Axx−Ayy is of order �̇2 �see
Ref. �35��. Therefore, the linear �Newtonian� regime is char-
acterized by  A=� /4. Outside the linear regime  A decreases
to zero for increasing shear rates �36,37�. The extinction
angle  O measures the average orientation of the bonds. We
have computed this quantity according to Eqs. �13� and �17�.
Figure 8 shows  O versus the reduced shear rate ��. This
angle decreases from 45° at very low shear rate down to a
few degrees while ��=100. All the data follow a universal
curve,  O����, which can be approximated by an interpola-
tion formula of the kind suggested in �37�:  O����
= O�0��1+���−0.51. We notice some discrepancy between
our results and the fit at very high shear rates ���20, which
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FIG. 7. �Color online� Zero-shear viscosity �0, as obtained by
extrapolation of nonequilibrium data �see text� vs the effective rate
constant ks measured as explained in Sec. III for two state points
and various �’s. Data are shown in order from left to right for the
state points of W=12 with �=0.02,0.1,1; and W=10 with �
=0.1,0.5,1 ,5. The straight line is the theoretical prediction Eq. �12�
of Faivre and Gardissat.
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could be originating from finite-size effects in strongly shear
cases. For comparison, the inset of Fig. 8 shows a dispersion
of the  O functions when the bare shear rate �̇ is used as an
independent variable. As expected, one sees that for fixed L0
and �̇, the angle  O is larger when � increases, reflecting the
fact that the average alignment of the bonds is weaker when
the scission-recombinations are faster.

In Fig. 9, we show, for selected parameter sets, the orien-
tation angle of the stress tensor  � versus ��. For the sake of
comparison, the angle  O versus �� and the empirical law
 O���� are also plotted. This figure indicates that for a given
��, the angles  O and  � are very nearly identical. Such a
result is a confirmation of the well known stress-optical law
�35�, even in quite nonlinear regime ���1.

The size of the chains is typically measured by the gyra-
tion tensor, which is diagonal at equilibrium, showing the
isotropic nature of the chains. Under shear flow, the aniso-
tropy of the chains can be evidenced by the orientational

angle  G, the angle of the principal axis I of the averaged

gyration tensor G� with respect to the flow direction. Not
surprisingly, this function is again a universal function of the
reduced shear rate ��. In Fig. 10, we show  G versus �� and
 G versus �̇ �inset�. A numerical fit was made for the data
 G����, which seems to be most valid for 0.2
��
20. It
gives  G����= G�0��1+��

0.81�−0.80. We see that  G lies sys-
tematically below  O, as observed for monodisperse poly-
mers �36,37�. This result reflects the fact that the deformation
of whole micelles is more sensitive to the flow than the ori-
entation of the individual bonds.

The degree of orientation of the bonds with respect to the
flow direction can be described by the orientation order pa-

rameter �38,39�. We compute SI, the largest eigenvalue of O� ,
for various sets of parameters. SI evolves monotonically
from 0 �no shear� to 1 �high shear�. We showed previously in
a preliminary study �19� that for a given L0, SI behaves as a
universal function of �� for different �’s. Remarkably, this
dependency remains valid for the longer chain system �40�
�i.e., L0=151�. Another interest of SI comes from its link
with the rheology. A recent experimental work on micellar
solutions �38� showed that the non-Newtonian viscosity � is
a simple decreasing exponential function of SI, and we have
tested this observation in our system. In our nonequilibrium
simulations, the average stress tensor is estimated by Eq.
�16�. Under a shear flow in the x direction, the effective
viscosity ��� , �̇� is obtained by the following:

���,�̇� =
�xy��,�̇�

�̇
. �18�

All our results can be fitted by a set of single exponential
laws �=�0���exp�−aSI�, where �0��� is the zero-shear vis-
cosity and a=5.7 for all � and both state points. Thus, as
mentioned in the previous section, our nonequilibrium data
give, by extrapolation, an accurate estimation of the zero-
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FIG. 8. �Color online� The extinction angle  O vs �� and vs �̇
�inset�, for both semidilute cases. Data correspond to W=12, with
�=0.02 �cross�, �=0.1 �down triangles�, �=1 �stars�; and W=10
with �=0.1 �filled circles�, �=0.5 �open squares�, �=1 �up tri-
angles�, �=5 �open diamonds�. The continuous line in the main
figure corresponds to the empirical law �see text�. In the inset, lines
connecting the data points are a guide to the eye.
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FIG. 9. �Color online�  � �angle of stress tensor� vs ��, and  O

vs ��, for the state point of W=10 with �=0.1 �circles� and �=1
�squares� �filled symbols represent  O and open symbols represent
 ��. The dashed line shows the empirical law for  O �see text�.
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FIG. 10. �Color online�  G �the orientation angle associated with
the average gyration tensor� vs ��, and vs �̇ �inset�, for the two
state points and several �’s. Data are shown for W=12 with �
=0.1 �triangles� and W=10 with �=0.5 �dots�, �=5 �squares�. The
continuous line in the main figure corresponds to the fit to  G �see
text� and the dashed line is the universal curve of  O, already shown
in Fig. 9. In the inset, lines connecting the data points are a guide to
the eye.
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shear viscosity �0�W ,��, for given T and �. These observa-
tions also lead to shear thinning parameter � /�0 being a
universal function of the order parameter SI, as shown in Fig.
11. In the inset, we plot � /�0 as a function of ��. We ob-
serve that this quantity falls on a universal curve, which
obeys � /�0= �1+���−0.37, as in our previous work �19�
based on a single state point �W=10�.

B. Scission-recombination kinetics under flow

In this subsection, the influence of the shear flow on the
kinetics is studied. In Sec. II, we stressed that our kinetics
model, coupled to a Langevin dynamics for monomer diffu-
sion, guarantees that the number of scissions and recombina-
tions �per unit volume and unit time� taking place at any
given relative distance r between monomers is equal at equi-
librium.

Under shear, as a result of the imposition of a shear flow
in the Langevin dynamics, the microscopic reversibility is
broken �41�. Figure 2 shows for a specific nonequilibrium
stationary state the r-dependent number of scissions and re-
combinations N s

neq�r� and N r
neq�r� �where the dependency on

� and �̇ is kept implicit�, which are natural extensions of
similar quantities defined at equilibrium in Eq. �5�. We have
computed N s

neq�r� and N r
neq�r� according to the right-hand

side of Eq. �5� using expressions �6� and �7� in which the
bond length distribution P�r� and the chain end distribution
function gee�r� were computed from data provided by our
simulation of the �sheared� nonequilibrium stationary state.
The transitions were also computed by direct counting of
events as a function of r and the results are in very good
agreement with the prediction based on structural data. We
stress that Fig. 2 shows that the modification on the kinetics
due to shear flow takes place essentially within the adopted �
range. Indeed, as in equilibrium, an extension of the � range
by lowering its lower limit or increasing its upper limit
would have a marginal impact on our results and conclu-

sions, as only a few additional scission or recombination
events of the order of 1% would be allowed.

The analysis of nonequilibrium data in Fig. 2 leads to two
important remarks.

Under shear flow, scission events occur more often than
recombinations at large distances while recombinations oc-
cur more often than scissions at short distances. This does
not contradict the fact that the total number of scissions and
recombinations �corresponding to the integrals of Ns�� ,r�
and Nr�� ,r�� maintains the equality ns=nr required for a
stationary state. The time independence of the distributions
P�r� and gee�r� under stationary shear flow thus implies that
there is, on average, an overall continuous extension of
bounded pairs and an overall continuous contraction of the
relative distances between chain ends pertaining to different
micelles.

The comparison of the equilibrium and nonequilibrium
results shown in Fig. 2, which only differ by the imposition
or not of a shear rate, shows an enhancement of the number
of transitions in shear flow with respect to equilibrium. This
can be rationalized as follows. As the shear flow induces on
average an elongation of the bounded pairs, that is, a shift of
P�r� toward larger r values, the Monte Carlo scission accep-
tance probability is enhanced by the corresponding system-
atic decrease of the energy gap between the bounded to the
unbounded state as r increases. As no corresponding shear
effect takes place on the chain end distribution function, the
only way for the system to readjust global equivalence be-
tween both types of transitions is to increase the density of
chain ends, namely decreasing the average size of the chains
under shear with respect to equilibrium. The shortening of
the micelles under shear, which has been found quite system-
atically in previous studies where a continuous potential was
used to represent the scission and recombination processes
�17,24,25�, is analyzed in further detail below.

The rate constants can be computed, under stationary
flow, by the cumulative hazard method. Results are obtained
for one state point �W=10� and various �. We plot ks and kr,
scaled by their equilibrium values, versus the bare shear rate
�̇, in Fig. 12. We see that ks increases much more rapidly
with �̇ than kr, showing the effect of the stretching of chains.
Secondly, results for different � fall on one universal curve.
A good fit gives

ks��,�̇� = 2����,�̇�Qs��,�̇� = 2��0���Qs
eq�1 + 18.5��̇�� ,

�19�

kr��,�̇� = 2����,�̇�Qr��,�̇� = 2��0���Qr
eq�1 + 2.5��̇�� .

�20�

Equations �19� and �20� show a separation of the dependen-
cies on � and on �̇, the � dependence being included in the
�static� transmission coefficient �0��� and the shear flow in-
fluence by the �̇-dependent term.

These results on rate constants indicate how the average
length �L� decreases with increasing shear rate, and can ex-
plain why it varies independently from �, as in the equilib-
rium case �20,19�. This independence of �L� on � under
shear flow differs from the other collective properties exam-
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FIG. 11. �Color online� Universal function � /�0 vs SI. Results
for the two state points and all �’s are shown: W=12 with �
=0.02 �! symbols�, �=0.1 �circles�, �=1 �cross�; and W=10 with
�=0.1 �filled squares�, �=0.5 �open squares�, �=1 �open tri-
angles�, �=5 �filled down-triangles�. The straight line indicates the
exponential law. In the inset, the universal function � /�0 vs �� is
drawn �dashed line�.
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ined above, which yield universal functions of the reduced
shear rate ��. The equality between effective scissions and
effective recombinations requires

ns
eff��,�̇� = ks��,�̇���1 − 1/�L��

= nr
eff��,�̇� =

1

2
� �

�L�
	2

kr��,�̇� . �21�

This gives, taking into account Eqs. �19� and �20� and as-
suming �L��1,

�L� = �kr�/2ks = L0� 1 + 2.5��̇�
1 + 18.5��̇�

. �22�

In Fig. 13, the evolution of L0 / �L� is shown versus �̇, for
four values of � and the state point W=10. All points lay on
the same curve, given by Eq. �22�.

VI. CONCLUSIONS

This work concerns micellar solutions in a semidilute re-
gime where chains are dynamically unentangled. Using a
recent “equilibrium polymer” model, we studied two state
points �W ,�� corresponding to chains with different average
size. Given our ability to tune �through the adjustment of the
� parameter� the barrier height of the kinetic processes with-
out modifying the structural and thermodynamic properties
of the system, we have followed the influence of the
scission-recombination kinetics on various relaxation pro-
cesses at equilibrium and on the stress and structural features
when these solutions are sheared. Our scission-
recombination kinetic model is investigated in some detail at
equilibrium �where microscopic reversibility is verified� and

under flowing conditions, given its intrinsic interest to model
the kinetics of various adsorption or reaction processes in
complex systems modeled at a mesoscopic scale. The present
study contrasts with previous simulation studies
�17,24,25,42� by the capability of our model to follow, for
each thermodynamic system, not only the shear rate �̇ depen-
dency as usual, but also the dependency of various structural
or dynamical properties with the size � of its dynamical
units, a crucial parameter directly linked to the rates of the
scission-recombination kinetics. At equilibrium, the relevant
time ���ks

−2/3 appears to be the crossover time between
Rouse and Einstein diffusive regimes and is shown to be the
characteristic time relevant to the Faivre-Gardissat theoreti-
cal expression of the Newtonian shear viscosity expression
for unentangled polymers subject to scission-recombination
kinetics. We show more evidence of the universal role of the
dynamic time �� by displaying that the chain orientation,
chain deformation, and the shear thinning behavior are all
universal functions of the reduced shear rate ��=���̇. For
future work, we plan to investigate dynamically entangled
micelles. An interesting regime corresponds to the situation
in which the kinetics is fast compared to the Rouse time of
the average chain segment between two successive entangle-
ments �43,44�, which should give rise to a specific stress
relaxation mechanism and associated relaxation time sug-
gested in �13�.
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